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In the hydroxylation of substrate (RH) by heme monooxygenases1

such as cytochromes P450,2 heme oxygenase (HO),3 and nitric oxide
synthase (NOS),4,5 the committed portion of the catalytic cycle
involves the one-electron reduction of the enzyme’s dioxygen-bound
ferroheme (O2Fe(Por)); with the addition of two protons this leads
to the hydroxylation of substrate.1 The two protons are delivered
by an elaborate distal-pocket proton-delivery network connected
by H-bonds to the oxy-ferroheme.6,7

The physiological reduction and addition of the first proton may
well involve proton-coupled electron transfer,8,9 but radiolytic
cryoreduction in general forms a trapped peroxo-ferriheme state
([FeO2]7

per; 1),10,11 thereby decoupling the two processes, and
allowing us to monitor at all temperatures both the transfer of the
“first” proton to generate the hydroperoxo-ferriheme ([FeO2H];7

2), eq 1, and the subsequent activation of this species by the second

proton.12 In the first measurement of enzymatic proton transfer at
liquid helium temperatures, we examine protonation of1 in HO in
H2O and D2O solvents at ca. 4 K and above, and compare these
finding with analogous measurements for oxy-P450cam and for
oxy-Mb.

Cryoreduction of oxy-HO frozen in both H2O and D2O glycerol/
buffer medium at 77 K has been shown to afford a hydroperoxo-
ferriheme EPR signal withg-tensor componentsga ) [2.37, 2.180,
1.917] (Figure 1, inset).13 Thus, proton/deuteron 1 is delivered (eq
1) without the need for thermal activation above this temperature.

When oxy-HO frozen in H2O buffer and situated in the EPR
cavity is reduced by an electron beam at∼4.2 K,14 a strong EPR
signal from2 (Figure 1) shows that the proton/deuteron has been
delivered to the one-electron reduced oxy-heme center even at this
temperature. Surprisingly, cryogenic proton transfer isnotquenched
when the∼4.2 K experiment is repeated with oxy-HO exchanged
into D2O buffer, Figure 1. As shown in Figure 1, the signal remains
unchanged upon in situ annealing to∼77 K, and the signal taken
at this temperature within∼ 20 min of irradiation matches that
seen upon 77 K irradiation. Disruption of the distal network through
mutation of a critical component in HO(D140X), X) A, F, does

quench helium-temperature proton transfer; as reported, eq 1 only
occurs in the mutants at temperatures above∼170-180 K.13

The prompt delivery of “proton 1” at∼4-7 K is not seen in
P450cam, even though it too has a distal-pocket proton-delivery
network.15 As reported, when the camphor complex of oxy-
P450cam is cryoreduced at 4-7 K, the major product is1; as the
sample temperature is raised in situ, substantial proton delivery to
generate2 occurs by∼55 K and above,17 a process which is slowed
in D2O buffer glass.18,19 As with HO, perturbation of the proton-
delivering network in P450cam by mutation D252N disrupts the
ready proton transfer (eq 1), which occurs only at temperatures
above∼170 K in the mutant.17

The behavior of the HO-1(D140X) and P450cam(D251N)
mutants in fact is similar to that of the O2-carrying proteins, Hb
and Mb. Cryoreduction of oxy-Mb and oxy-Hb at 77 K affords1,
and it is stable at this temperature for years; for completeness, we
reduced oxy-Mb in glycerol/buffer at∼4.2 K and confirmed that
there is no proton transfer at this temperature or upon annealing to
∼77 K. The oxy-Mb (and oxy-Hb) intermediates1 do not convert
to 2 at temperatures less than 170 K;20 by 200 K, the reaction,
eq 1, is too fast to measure by progressive annealing with either
H2O or D2O solvents,τ , 1 min. We determined the solvent kinetic
isotope effect (solV-KIE) for eq 1 in oxy-Mb at 180 K, through
measurements in H2O and D2O glycerol/buffer,12 Figure 2. At this
temperature the decay of1 is roughly biphasic, as has been seen
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Figure 1. g1-region X-band EPR spectra of oxy-HO cryoreduced in situ
in EPR cavity at∼4.2 K; spectra collected at∼7 K. Rise with increasing
field is due to intensity from them ) 1/2 H-atom line. Small features at
∼3000 G and above are from minority (<5%) oxy-HO substates. In these
spectra, differential H/D broadening is not apparent.Conditions: microwave
frequency, 9.502 GHz; modulation amplitude, 7.5 G. (Inset) Full 35 GHz
spectrum of HO intermediate2 (2 K).
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for transfer of proton 1 in P450cam,19 presumably corresponding
to two conformational substates. For the majority (∼60%) rapid
phase, the decay constants areτ(H2O) ) 2.2 min, τ(D2O) ) 15
min, giving solV-KIE ) τ(D2O)/(H2O) ) 3.8; for the slow phase,
solV-KIE ≈ 20.

We have made an unprecedented observation of enzymatic proton
transfer in HO (eq 1) at liquid helium temperatures. Such a process
would be suppressed at these temperatures if it were described by
barrier-crossing proton transfer, and thus we infer that it occurs
via through-barrier, quantum proton tunneling. A useful “umbrella”
under which to discuss our observations is the picture of environ-
mentally coupled tunneling.21-23 This model links proton transfer
to two classes of protein motions: environmental reorganization
(λ in Marcus-like24 equations),23,25 protein fluctuations (“active
dynamics”; gating) which modulate the distance of proton transfer.
The helium-temperature results show that HO has an active-site
structure fully organized to support proton tunneling, with a
relatively short proton-transfer distance (narrow barrier) and no need
for dynamic modulation of the distance. As proton transfer in
P450cam can occur at∼ 50 K and above, where “gating”
fluctuations still remain frozen,26,27 proton transfer in P450cam
likely is analogous to that in HO, but with an increased environ-
mental reorganization energy (λ) which slows eq 1 and introduces
the temperature dependence. For Mb/Hb, the rapid onset of eq 1 at
T > 170 K is attributable to a combination of two factors: (i)
relaxation of the heme pocket to accommodate the reduced oxy-
heme, reducing the width of the static barrier for proton transfer;
(ii) the onset of dynamical modulation of the width of the tunneling
barrier as the protein undergoes a “glass transition”26,27and gating
fluctuations become possible. The HO(D140X) and P450cam-

(D251N) mutations disrupt the distal pocket, converting the proton-
delivery process into one like that in Mb. We anticipate that detailed
studies of the temperature/pH dependence of proton transfer in these
proteins and their mutants will offer deeper insights into protein
control of proton delivery.
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Figure 2. EPR signal intensity of Mb intermediate1 in H2O ([) and D2O
buffers (b) during stepwise annealing to 180 K and recooling to 77 K for
analysis; intensities are peak-trough heights ofg2 feature.
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